From Athlete to Algorithm: Transforming Canoe Technique Analysis with AI

We introduce an innovative application of computer vision and artificial intelligence to analyze training videos of canoe athletes preparing for the Olympic Games. Our method employs foreground-background separation for canoe detection and waterline derivation. Through pose detection, we identify the paddle and have trained a neural network to recognize essential paddle positions for routine training analysis. Additionally, we incorporate biomechanical insights in a post-processing step to refine AI results and enhance analysis accuracy. Traditionally, biomechanics engineers manually screen training videos frame by frame to locate specific paddle positions and measure the paddle's angle relative to the waterline; a process taking about 20 minutes per athlete. Our approach significantly streamlines this process, reducing the workload by an order of magnitude.

Speaker

FURTHER SESSIONS FROM #AI

  • Building the future with Azure AI

  • Custom Copilots und Prozess Orchestrierung mit Microsoft Semantic Kernel und Gen AI

  • Das A in IoT steht für AI: Eine Kurzgeschichte der künstlichen Intelligenz für IoT Profis

  • Der AI Act ist da: Gamechanger für KI in Europa?

  • Have you discovered something exciting?

    Register today!

    Don't miss the chance to learn from leading experts and make valuable contacts!